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A B S T R A C T

During the last fifty years, there has been a dramatic increase in the development of anthropogenic activities,
and this is particularly threatening to marine coastal ecosystems. The management of these multiple and si-
multaneous anthropogenic pressures requires reliable and precise data on their distribution, as well as in-
formation (data, modelling) on their potential effects on sensitive ecosystems. Focusing on Posidonia oceanica
beds, a threatened habitat-forming seagrass species endemic to the Mediterranean, we developed a statistical
approach to study the complex relationship between human multiple activities and ecosystem status. We used
Random Forest modelling to explain the degradation status of P. oceanica (defined herein as the shift from
seagrass bed to dead matte) as a function of depth and 10 anthropogenic pressures along the French
Mediterranean coast (1700 km of coastline including Corsica). Using a 50×50m grid cells dataset, we obtained
a particularly accurate model explaining 71.3% of the variance, with a Pearson correlation of 0.84 between
predicted and observed values. Human-made coastline, depth, coastal population, urbanization, and agriculture
were the best global predictors of P. oceanica's degradation status. Aquaculture was the least important predictor,
although its local individual influence was among the highest. Non-linear relationship between predictors and
seagrass beds status was detected with tipping points (i.e. thresholds) for all variables except agriculture and
industrial effluents. Using these tipping points, we built a map representing the coastal seagrass beds classified
into four categories according to an increasing pressure gradient and its risk of phase shift. Our approach
provides important information that can be used to help managers preserve this essential and endangered
ecosystem.

1. Introduction

Ecosystems are globally threatened by anthropogenic pressures
(Halpern et al., 2008; Hoekstra et al., 2005; Jackson et al., 2001;
Stachowitsch, 2003; Vitousek et al., 1997). The increasing impact of
humans on ecosystems is accompanied by an increasing demand on
ecological services (e.g. production of edible biomass or nutrient cy-
cling). In this context, concerns are emerging about our capacity to
manage the balance between human impacts, ecosystem status and the
provision of ecological services (United Nations Environment
Programme, 2006). These concerns affect the vast majority of the
human population, but they are particularly pressing for coastal

ecosystems which concentrate high levels of marine biodiversity
(Halpern et al., 2008). Therefore, the development of new predictive
tools to support decision makers to maintain healthy ecosystems, de-
spite increasing pressures, are urgently needed (Mouquet et al., 2015).

The relationship between the intensity of anthropogenic pressures
and the status of ecosystems is largely acknowledged (Wilkinson,
1999). Well-known examples include the ‘phase shift’ (or regime shift)
which implies a dramatic change from a healthy to a degraded eco-
system status after a tipping point is reached (Hughes, 1994; Scheffer
et al., 2001). The existence of non-linearity in an ecosystem's response
to disturbance adds complexity and challenges for the development of
predictive statistical tools. For example, diverse methods, from
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experiments to time series analyses have been used to study a decrease
and/or an unexpected resurgence of seagrass in a non-linear way
(Connell et al., 2017; Gurbisz and Kemp, 2014; Hughes et al., 2017;
Lefcheck et al., 2017). However, non-linearity also opens new possibi-
lities for ecosystem management if thresholds and tipping points are
identified (Folke et al., 2004). Indeed, the same variation in pressure
intensity could have either a negligible or dramatic effect on ecosys-
tems, according to the nature of the system-pressure relationship, and
the position of the ecosystem status relative to the tipping point. It also
means that different ecosystem “states” (e.g., bare sediment, dead
seagrass beds and sediment colonized by alive seagrass or submersed
aquatic vegetation) can exist under the same set of environmental
conditions (e.g., turbid and clear water) (Gurbisz and Kemp, 2014).
Therefore, the development of tools able to quantify the nature of the
system-pressure relationship and the relative distance to tipping points
is essential so that managers can understand how their decisions impact
ecosystems (Graham et al., 2015).

In this study, we developed a spatially explicit statistical approach
to: (i) characterize the system-pressure relationship for multiple pres-
sures, (ii) identify tipping points and (iii) use the distance from these
tipping points to classify an ecosystem according to its risk of phase
shift. Seagrass ecosystems were chosen because they provide many
ecosystem services such as nursery, spawning, feeding and oxygenation,
and they also aid coastal protection and sediment trapping (Borum
et al., 2004; Campagne et al., 2015). However, they are threatened by
many human activities such as shoreline alteration, anchoring, waste-
water release and climatic changes (Orth et al., 2006, 2017a; Waycott
et al., 2009). We chose the most common Mediterranean seagrass
meadow (Posidonia oceanica (L.) Delile) as a model system. P. oceanica
is a protected plant (Pergent et al., 2010) which forms extensive mea-
dows from the surface to depths of 40m (depending on water trans-
parency and temperature). Over the last 100 years, a global decline
with losses exceeding 25% worldwide has been observed for most
species of seagrass (Waycott et al., 2009), including P. oceanica, whose
loss of area has been evaluated to be 10% (Boudouresque et al., 2012;
Marbà et al., 2014). A recent study led along the French South-Eastern
coast specified that 73% of the shallow seagrass limits had declined
over the last 85 years, with a loss of 13% of the initial shallow meadow
areas (spatial extent between 0 and 15m deep) (Holon et al., 2015a).
Lost areas were mainly found along human-made coastlines such as
harbours (Holon et al., 2015a). Coastal infrastructures were also re-
cently recognized as a major threat to the P. oceanica food web
(Giakoumi et al., 2015).

Based on an extensive collection of high resolution field data, we
propose a framework to quantify the role of multiple anthropogenic
pressures in shaping the status of coastal ecosystems, such information
can then be used to map their risk of degradation. We used a fine re-
solution (scale 1:10000) spatial dataset covering the entire French
Mediterranean coastline (1700 km), combining the distribution of P.
oceanica and 10 anthropogenic pressures in a statistical modelling fra-
mework. Our approach comprised four main steps: (1) mapping human
pressures and their intensities for three different grid cell sizes using a
geographic information system (GIS), (2) mapping living and dead P.
oceanica beds, (3) modelling and predicting the relationships between
the distribution of human pressures and the degradation status of P.
oceanica (4) use of the best model to build maps highlighting priority
areas for management, according to the tipping point values (identified
by step 3) of the 10 anthropogenic pressures.

2. Materials and methods

2.1. Study area and seagrass bed maps

Our study considers the French Mediterranean coastline (1700 km
including Corsica) between 0m and 40m deep, i.e. the bathymetric
range of P. oceanica in France (Boudouresque et al., 2012). Two

ecosystem states were taken into account: living P. oceanica seagrass
beds and dead matte covering (what remains of the plant after its
death), which account for 70,641 ha and 5693 ha of seabed, respec-
tively (Holon, 2015). Maps of these marine habitats and bathymetric
data were obtained during previous work and are freely available after
free registration at http://www.medtrix.fr (DONIA expert project, see
Holon et al., 2015a, 2015b for details concerning data and map
building). Briefly, after compiling a bibliographic synthesis, we gath-
ered and homogenized data from 1:10000 habitat maps; these data
were collected by different organizations and programmes (see Ac-
knowledgements). Campaigns were led between 2005 and 2014 using
classical methods: aerial or satellite photography, side-scan sonar
survey, sonar survey and validation through direct observations
(“ground-truth points”) based on classical dives and/or towed dives. A
final 1:10000 continuous habitat map was realized, comprising 11 ha-
bitat classes including P. oceanica seagrass and dead matte. For this
study, all habitats other than P. oceanica and its dead matte were re-
moved. To find the scale that allowed for the best model, the original
vector map was rasterized using three different grid cell sizes:
20× 20m, 50×50m and 100×100m. For each cell size, the de-
gradation status of P. oceanica meadows was calculated as the percen-
tage of dead matte cover (interpreted as a decline rate, see Moreno et al.
(2001)); the higher the percentage of dead matte cover, the higher the
degradation status.

2.2. Anthropogenic pressures

We considered 10 relevant pressures for which data were available
(Holon et al., 2015b): (1) agriculture (land cover), (2) aquaculture
(total area of the farms), (3) coastal erosion (land cover), (4) industrial
effluents (chemical oxygen demand), (5) human-made coastline (big
harbours/harbours/artificial beaches, ports of refuge/pontoons,
groynes, landfills and seawall areas), (6) boat anchoring (number and
size of boats observed during summer), (7) fishing (traditional and re-
creational fishing areas estimated from the observation of buoy nets,
pleasure fishermen and fishing boats i.e. passive fishing), (8) coastal
population (size and density considering the inhabitants/residents), (9)
urban effluents (capacity and output) and (10) urbanization (land
cover). It is thought that these pressures impact the seagrass by mod-
ifying water clarity and/or current, and/or by causing direct physical
damage (Boudouresque et al., 2012). Coastal populations often include
consumers which can lead to an increased demand on resources (water,
energy, raw material) and natural areas for recreational activities, and
can also increase the emission of various pollutants in the water, soil
and air (Savage et al., 2010). By definition, human-made coastline,
coastal population and urbanization were somewhat correlated
(Spearman correlation coefficient 0.57–0.62), but not enough (< 0.8)
to discard any of them. Moreover, Random Forests, i.e. the method that
we used, are unaffected by multicollinearity. All other predictors were
poorly correlated (Spearman correlation coefficient < 0.27). Details
concerning data and map building have previously been described in
Holon et al. (2015b). Briefly, data concerning the origin and intensity of
these pressures came from published databases: MEDAM, CORINE land
cover, INSEE and MEDOBS data, but were also provided by Agence de
l'Eau RMC and IFREMER. Satellite-aerial pictures and unpublished data
from Andromède océanologie were also analysed. Models of the spatial
extent of the pressures were built using ArcGIS 10 (ESRI, Redlands,
California, USA), with a 20m distance matrix. We applied a pressure
curve (type y= a. exp (−bx)) considering the distance (but not the
current) to the source with a negative exponential shape ranging be-
tween 100% (origin) and 0% (no more impact) to each type of pressure.
We also included bathymetry to model the spread of each pressure
(Holon et al., 2015b). Please note that for a given pressure, grid cells
with equivalent pressure values could correspond to different types of
origin and intensity, for example for human-made coastline, the pres-
sure at a large distance (15 km) from a large harbour may correspond in
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value to the pressure estimated at a short distance (1 km) from a pon-
toon (details described in Holon et al., 2015b). All pressure layers were
then log[X+1]-transformed and rescaled between 0 and 100 to allow
direct comparisons (0= no pressure= the minimal value observed in
our data and 1= the maximal value of pressure observed in our data).
The maps are freely available from http://www.medtrix.fr (IMPACT
project) after free registration. Two additional layers with larger grid
cells (50×50m and 100×100m) were also built.

2.3. Link between the degradation status of P. oceanica and predictive
variables

The degradation status of P. oceanica (percentage of dead matte
cover) was modelled according to depth and each anthropogenic
pressure using Random Forests (also denoted in the literature as “RF”
and “randomForest”) as previously described by Liaw and Wiener
(2002) and Prasad et al. (2006) (Breiman, 2001; Cutler et al., 2007).
Random Forests is a machine learning method that builds a set of
classification or regression trees. Numerous trees are built using a
random sample of the observed data and a random set of predictive
variables each time, to decide the best split at each tree node. Trees are
grown to maximum size without pruning, and the aggregation of trees
is performed by averaging (Breiman, 2001; Cutler et al., 2007). The
estimation of response values is performed using the withheld “out-of-
bag” observations (Prasad et al., 2006; Cutler et al., 2007). The ex-
plained model's variance is assessed on the accuracy of the prediction of
“out-of-bag” data. Random Forests have been found to be ideally suited
to ecological data as they do not require linear relationships, they ef-
fectively model variable interactions, can handle missing data and
correlated variables, are more stable than traditional regression trees to
minor changes in input data and have high predictive power (Breiman,
2001; Prasad et al., 2006; Cutler et al., 2007; Catherine et al., 2010;
Parravicini et al., 2012; Breiman et al., 2013). The choice of RF building
parameters was optimized using the R “caret” package (Kuhn, 2008):
Random Forests were built using 1000 trees so to stabilize the ‘out-of-
bag’ error and allow for random testing of seven potential splitting
variables at each node.

2.3.1. Choice of scale
For each scale studied (20×20m, 50× 50m and 100×100m

grid cell sizes) a model was built and the predictive capacities of the
three models were compared using the percentage of explained var-
iance and the Pearson correlation between training (prediction forest
built on 80% (random subsample of cells) of the dataset) and testing
(the remaining 20% of the data) datasets. Thereafter, the scale (grid
size) producing the highest explained variance and correlation was
used.

2.3.2. Estimation of the relative influence of the predictive variables on the
degradation status of P. oceanica

In RF, the importance of a predictive variable is quantified by
comparing the accuracy of the model's predictions using the original
variable with the accuracy of the same model using a randomly per-
muted variable (Siroky, 2009). Two output metrics are generally used.
The first, (IncMSE), is a normalized comparison of the mean square
error of the model's predictions with predictions generated using ran-
domly permuted predictor values from the “out-of-bag” data (Cutler
et al., 2007). The second, (IncNodePurity), is the average total decrease
in node impurity attributed to splitting on each measured variable using
the residual sum of squares; it provides an indication of node prediction
accuracy attributed to each variable. The relative importance of each
quantitative predictive variable (depth and 10 anthropogenic pres-
sures) on the degradation status of P. oceanica was assessed using both
metrics.

2.3.3. Detection of tipping points
To characterize the shape of the system-pressure relationship, we

produced partial dependence plots and studied the effect of each in-
dividual predictor. Random Forest partial dependence plots allowed us
to visualize the influence of each individual predictor on the response
variable, while considering the average effects of all interactions with
all the other predictors. This was achieved by applying the model to a
new dataset for each unique value of the predictor of interest, with all
other predictors held constant across other permutations. The response
variable for this specific value of the predictor was then equal to the
average of the predictions over the entire dataset (Jones and Linder,
2015). Single tipping points (i.e. the point at which the statistical
properties of a sequence of observations abruptly change) were de-
tected using the “Changepoint” R package (Killick, 2016), using the
default method (“Amoc” at most one change). Briefly, with this method,
the data are divided into two segments and the values of the parameters
associated with each segment (in this case the mean) are estimated to
detect a potential change between segments (likelihood ratio test).
Every point is a priori a candidate change point and if there is evidence
of a change, the candidate point providing the strongest evidence be-
comes the detected change point.

2.3.4. Map building
For each grid cell, the relative distance to tipping points was scaled

between 0 and 2 (tipping point value being equal to 1). To aid both
visualization and management decisions, the results were presented
according to four equal categories: [0 to 0.5] being largely below tip-
ping point, [0.5 to 1] being below tipping point, [1 to 1.5] being above
tipping point and [1.5 to 2] being largely above tipping point. An ad-
ditional map combining all predictive variables according to their tip-
ping point and their effect on predicted degradation status was also
built with raster mosaic equal to the weighted sum of the transformed
values for all variables. The weights were defined as proportional to the
range of prediction for each partial plot (maximum – minimum), as it
considered the global effect of each predictor on P. oceanica bed status,
and gave more importance to predictors that had a stronger effect, even
locally (aquaculture for instance as shown by Delgado et al. (1999)).
For a given predictor p among n predictors, the weight was calculated
using the following equation:

=
∑ =

Weight
range predicted degradation

range predicted degradation

( )

( )p
p

i
n

i1

This final map shows the influence of the combined pressures on the
seabed (seagrass beds and dead matte) according to four equal cate-
gories between the minimal and maximal values. Managers could use
the information provided by this map to decide which areas to protect,
prioritizing areas in the first category (with the lowest values), then the
areas in the second and then the third categories. The lowest category
(very low) contained well-preserved seagrass beds with a small risk of
phase shift. The second category (low) contained seagrass beds that
were approaching the tipping point, and for which management efforts
would be required to avoid reaching this tipping point. The third ca-
tegory (high) included seagrass beds with a high risk of phase shift, and
for which management efforts were either urgently required or too late.
The final category (very high) consisted of highly degraded seagrass
beds, and for which a return to living seagrass beds would be a very
long and perhaps impossible process.

All statistical analyses were performed using R 3.0.2. (R
Development Core Team, 2014). An overview of the processing steps
used in this study is shown in Fig. 1.
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3. Results

3.1. Optimal scale

The models obtained with the 20×20m and 50× 50m datasets
showed similar predictive performances (with percentages of explained
variance of 69% and 71.3%, respectively and Pearson correlation va-
lues of 0.83 and 0.84, respectively). In contrast, the model obtained
with the 100×100m dataset (90,060 cells) clearly showed a lower
predictive capacity (60.7% explained variance, with a Pearson corre-
lation value of 0.77). The comparison between the predictive capacities
of the models obtained with each of the three datasets led us to perform
the rest of the analyses using the 50× 50m grid cells dataset (351,955
cells).

3.2. Relative influence of the predictive variables on the degradation status
of P. oceanica

Three anthropogenic pressures occupied the highest numbers of
cells: urbanization (87% of all cells), coastal population (72%) and
agriculture (50%) (Fig. 2). In contrast, aquaculture (1.6% of the cells)
and industrial effluents (5.5% of the cells) only occupied a few cells
(Fig. 2).

IncMSE and IncNodePurity, the metrics that we used to assess the
relative importance of each quantitative predictive variable, identified
human-made coastline, depth, coastal population, urbanization and
agriculture among the most influential variables (Fig. 3). Boat an-
choring, industrial effluents and aquaculture were the least influential
variables of the model (Fig. 3). Individual partial dependence plots
showed how the predicted degradation status of P. oceanica varied as a
function of the different individual variables (Figs. 4 and Fig. S1),

Fig. 1. Overview of the processing steps followed in this study. Explanations are provided in Section 2 of the text.

F. Holon et al. Biological Conservation 222 (2018) 125–135

128



considering the influence of all the other predictors included in the
model. From the partial dependence plots, depth, human-made coast-
line, boat anchoring and aquaculture showed the highest values of
percentage of dead matte cover (prediction>20% on the y axis, Fig. 4
and Fig. S1) meaning a high local influence when the pressure is pre-
sent. Globally, all the pressure variables increased the degradation
status of P. oceanica beds (the higher the pressure value, the higher the
dead matte cover) (Fig. 4). As an example, the partial dependence plot
for urbanization (Fig. 4D) showed that the average dead matte cover
remained relatively stable until an urbanization pressure value of 69%
(distance of 800m from a cell totally covered by urbanization),
whereupon the dead matte cover increased dramatically. This would
suggest that limits need to be set for future urbanization projects to
ensure they are a distance of at least 800m away from P. oceanica beds,

to avoid their degradation. The most interesting information gleaned
from partial dependence plots were the shape of the predictors-response
variable relationships, exploited in the analysis of tipping points below.

3.3. Tipping points

Tipping points were detected for all variables except for agriculture
and industrial effluents (Fig. 4 and Fig. S1, Table 1). The percentage of
dead matte clearly increased at depths beyond 20m (Fig. 4B). A tipping
point of 28% was estimated for boat anchoring corresponding to 56
boats (< 15m) per grid cell (50×50m) per summer, meaning that the
percentage of dead matte cover started to increase beyond 2.2 fifteen-
meter boats per 100m2 per summer (Fig. S1I, Table 1). Similarly,
coastal population and human-made coastline influenced the percen-
tage of dead matte cover up to distances of 3.9 km (for a population
density > 2000 inhabitants/km2) and 2.5 km (for a harbour), respec-
tively (Fig. 4C and A, Table 1). Smaller tipping point distances were
observed for urbanization (800m), urban effluents (940m for a
40,000–100,000 population equivalent discard), coastal erosion
(570m), aquaculture (320m) and fishing (100m) (Fig. S1D, S1H, S1G,
S1K and S1F, Table 1).

Maps built for each pressure showed that along the mainland, all the
meadows and dead matte located near the coast surpassed the tipping
point value for coastal population, except for very small areas including
islands (detailed maps are freely available on http://www.medtrix.fr
(“IMPACT” project) after free registration, see Fig. 5 for an example).

Weights used to combine the pressures according to their relative
influence on predicted degradation were: 32.4% for human-made
coastline, 13.3% for coastal population, 9.6% for urbanization, 11.8%
for agriculture, 5.3% for fishing, 7.4% for erosion, 5.6% for urban

Fig. 2. Proportion of 50× 50m cells (in percentage) occupied by the different
predictors used to model the degradation status of P. oceanica. Total number of
cells = 351,955.

Fig. 3. Importance of each of the 11 predictors: ((1)
agriculture (land cover), (2) aquaculture (total area of the
farms), (3) coastal erosion (land cover), (4) industrial
effluents (chemical oxygen demand), (5) human-made
coastline (big harbours/harbours/artificial beaches, ports
of refuge/pontoons, groynes, landfills and seawall areas),
(6) boat anchoring (number and size of boats observed
during summer), (7) fishing (traditional and recreational
fishing areas), (8) coastal population (size and density
considering the inhabitants/residents), (9) urban ef-
fluents (capacity and output), (10) urbanization (land
cover) and (11) depth) in the model, in terms of mean
square errors (IncMSE) and node prediction accuracy
(IncNodePurity). The higher the value of IncMSE and
IncNodePurity, the greater the importance of the variable
for the percentage of dead matte cover.
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effluents, 20.4% for anchoring, 10.3% for industrial effluents and
10.3% for aquaculture. The weighted sum of all pressures was then
classified into four equally spaced categories (0–0.34, 0.34–0.69,
0.69–1.03 and 1.03–1.38) to help decision makers protect the most
vulnerable areas from reaching tipping points. Combining all the
pressures, most of the meadows and dead mattes located near the
coastline corresponded to the categories “high” or “very high” (see
Fig. 6 and detailed maps available at www.medtrix.fr, “IMPACT” pro-
ject). In contrast, offshore areas showed lower scores especially where
meadows and dead matte occupied the largest areas (Fig. 6). Preserved
areas (category “very low”) covering the entire bathymetric gradient
from the coastline to offshore were rare (Fig. 6).

4. Discussion

4.1. An effective framework to detect and map the influence of multiple
pressures

The objectives of our study were to quantify the influence of mul-
tiple anthropogenic pressures on the degradation of a coastal eco-
system, and to build an efficient predictive model and use such in-
formation to highlight which areas managers should prioritize
according to the identified tipping points. We found that 50×50m
grid cells were sufficient to obtain a model with very good performance
(71.3% of the variance explained). The model had an excellent pre-
dictive capacity with a Pearson correlation of 0.84 between predicted
and observed values. Our approach showed that most pressures ex-
hibited a complex non-linear effect on the degradation of the studied
ecosystem (tipping points were detected for eight pressures), thus jus-
tifying our selection of a Random Forest modelling approach.

The map we built based on these results provides useful information

for managers. The main objective of the European Union's (EU's)
Marine Strategy Framework Directive (MSFD, 2008/56/EC) is to ensure
marine resources within EU waters are kept in a sustainable state by
achieving Good Environmental Status (GES). Our study proposes a
simple methodology to help achieve GES targets that could be easily
reproduced for other ecosystems, given enough available data. Note,
however, that tipping points related to different pressures may be
combined in a synthetic index differently from the way used here. Here,
we have chosen to consider the global effect (rank shown in Fig. 3) of
each predictor and to give more importance to predictors that have a
stronger effect (in individual partial dependence plots), even if they are
localized (occupying only a small percentage of cells, aquaculture for
instance as shown by Delgado et al. (1999)).

4.2. Variables acting on the degradation status of P. oceanica

This work allowed us to rank the pressures acting on seagrass beds.
These pressures influence the degradation status of P. oceanica by de-
creasing water clarity, increasing sediment deposit, modifying water
current and/or by direct physical damage (Boudouresque et al., 2012).

Depth was a particularly important variable to be considered in our
model because it can show how the death of seagrass beds is vertically
distributed: the percentage of dead matte cover abruptly increases
below 20m. Depth was one of the most influential variables of the
model because i) the intensity of the pressures were modelled with a
decreasing shape according to increasing depths (Holon et al., 2015b),
and ii) for ecological reasons. Indeed, depth acts on P. oceanica presence
and vitality through its role in the penetration of light into the water
column, water temperature, water column mixing and the sedimenta-
tion process (Boudouresque et al., 2009, 2012).

Among the anthropogenic pressures, human-made coastline was the

Fig. 4. Partial dependence plots of the predicted degradation status of P. oceanica (in percentage) as a function of the four most important predictors (based on
IncNodePurity, Fig. 3) through the Random Forest model. Note that to improve visualization, the Y axis scale is adapted to each variable. The X axis scale is given in
scaled values (percentage of the maximum value, see Table 1 for the corresponding usable units). Single tipping points (i.e. the point at which the mean percent of
dead matte cover changes) were detected for each plot. The predictive variables are: (A) human-made coastline (big harbours/harbours/artificial beaches, ports of
refuge/pontoons, groynes, landfills and seawall areas), (B) depth (in metres), (C) coastal population (size and density considering the inhabitants/residents) and (D)
urbanization (land cover). Plots concerning the other predictor variables are shown in Fig. S1.
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most influential predictor: it figured among the most important vari-
ables of the model, it was very frequent (almost continuous (in pre-
sence) but at a varying intensity along the coastline) and was in-
dividually associated with a strong prediction of the degradation status.
A relatively scarce pressure like aquaculture had a weak influence in
the global model (because of its rare presence along the coastline), but
was very important locally to predict the degradation status (its pre-
sence was associated with high local dead matte percentages, predic-
tion>20% - Fig. S1k) as already suggested for P. oceanica by Delgado
et al. (1999) and for other seagrass species by Orth et al. (2017a). These
findings confirm results from previous studies of both this region
(Micheli et al., 2013) and elsewhere (Andersen et al., 2015; Ban et al.,
2010).

A ‘500 m safety distance’ from potential sources of impact is gen-
erally assumed for seagrass meadows (Cabaço et al., 2008; Pergent-
Martini et al., 2006; Tuya et al., 2013), but our work shows this is
insufficient. Actually, except for aquaculture (320m for aquatic
farms<3977m2) and fishing (100m, an expected short distance given
the types of fishing estimated i.e. passive fishing), all the tipping dis-
tances we found were over 500m (i.e. a strong impact). Human-made
coastline influenced the degradation status of P. oceanica up to a dis-
tance of 2.5 km (for a harbour), this distance was 3.9 km for coastal
population (from a population density > 2000 inhabitants/km2),
800m for urbanization and 940m for urban effluents (from a
40,000–100,000 population equivalent discard). Harbours are already

known to be the most damaging human-made coastal infrastructures:
destroyed meadows have been found up to a distance of 5 km from a
harbour (2.9 ± 5.2 m2 destroyed for 1m2; built over 5 km), with a
strong increase in impact over the first kilometre (Holon et al., 2015a).
All man-made coastal structures impact seagrass status, but pontoons
were found to have the least impact (Holon et al., 2015a; Patrick et al.,
2016).

4.3. Building a decision support tool

At the interface between economic development and biological
conservation, managers need to know where and on which ecosystems
they should urgently act. Our approach extends previous models on the
effects of multiple stressors on an ecosystem (Bianchi et al., 2012;
Parravicini et al., 2012; Stelzenmüller et al., 2010; Vacchi et al., 2014),
and the identification of tipping points represents an objective way to
identify and rank ecological priorities and concerns. Specifically, four
main benefits for managers can be highlighted: i) the differentiation of
pressures acting linearly or through a quantitative tipping point allows
managers to differentiate their actions and target values to fall under
the tipping points, ii) fine-scale detailed maps available for French
managers at www.medtrix.fr allow them to observe locally the spatial
influence of each pressure and their combined effect, iii) zonation (i.e.
the classification of sea beds into categories depending on the de-
gradation risk) facilitates decision making concerning monitoring and
sampling aspects and helps to precisely (using a grid cell size of
20× 20m) know where to act and iv) individual maps show which
pressures should be targeted as a priority. Moreover, our combined map
detailing how P. oceanica beds and dead matte covering are influenced
by the combination of all 10 pressures, displays four categories (Fig. 5b)
and can thus help managers decide the actions to be taken depending
on category and location.

For instance, we showed that areas classified as “very low” occu-
pying the entire depth gradient (shallow to deeper parts) of the eco-
system are scarce along the mainland coastline. We believe they de-
serve to be protected or be favoured for well-reasoned planning. For
areas classified as being under a low level of influence from all pres-
sures, managers must concentrate efforts to prevent seagrass beds from
reaching tipping points; priority pressures can be identified via the
individual maps. On the other hand, where the influence of the all
pressures is very high, limitation efforts are almost certainly useless
because the dead matte cover may already have reached 100% (sea-
grass entirely dead) and recovery will be difficult. It is more efficient to
focus on avoiding reaching the tipping point in areas classified as “very
low” or “low”, rather than repairing dead seagrass beds in areas clas-
sified as “high” or “very high”.

Areas in the “high” category can also be targeted for mitigation
measures to avoid sliding into the “very high” category.
Simultaneously, restorative actions (or experiments) may also be un-
dertaken. Restoration of a degraded seagrass bed can be extremely
difficult because reestablishment (in bare sediment or dead matte) re-
quires more stringent conditions than those needed to maintain an al-
ready established bed. As previously shown for other submersed aquatic
vegetation, resurgence requires the synergy of long-term water quality
and favourable climatic conditions (i.e. a dry period that increased light
availability due to less runoff), followed by positive feedback effects
(facilitation) (Gurbisz and Kemp, 2014). Restoration of P. oceanica
meadows would be even more challenging because the colonization of
new areas and the recolonization of lost areas, via seeds, vegetative
fragments or marginal spread of the meadow are extremely slow pro-
cesses (horizontal growth is on average 1–6 cm/year) (Marba et al.,
1996; Marbà and Duarte, 1998; Pergent-Martini and Pasqualini, 2000;
Boudouresque et al., 2012).

Finally, while our final map combining the different predictors is
interesting in terms of regional analysis (to define areas with priority
conservation issues or restoration capacities), local stakeholders and

Table 1
Corresponding pressure values (0%, 100% and tipping point values) in per-
centage (0%=minimal pressure value observed in our data, 100%=maximal
pressure value observed) and usable units (distance in km to the source of the
pressure, or number of boats per summer per 100m2) for the 10 anthropogenic
pressures. The corresponding values cited as examples in the results section are
presented in bold. Values in italics and parentheses correspond to pressure
values of 50% and concern pressures for which a linear effect was detected (no
tipping point). COD=chemical oxygen demand.

Pressure Category 0% Tipping
point

100%

Human-made
coastline
(distance in km)

Very large harbours (Marseille
and Toulon)

15 3.72 0

Harbours 10 2.48 0
Ports of refuge, artificial
beaches

3 0.74 0

Pontoons, groynes and
landfills

1 0.25 0

Coastal population
(distance in km)

≤80 inhabitants/km2 1 0.19 0
[80–300] inhabitants/km2 3 0.58 0
[300–2000] inhabitants/km2 5 0.97 0
> 2000 inhabitants/km2 20 3.87 0

Urbanization
(distance in km)

For a cell totally urbanized 10 0.80 0

Agriculture
(distance in km)

For a cell totally covered by
agriculture

10 (1.50) 0

Fishing
(distance in km)

– 1 0.10 0

Coastal erosion
(distance in km)

Aggradation 5 0.94 0
Erosion 3 0.57 0

Urban effluents
(distance in km)

< 10,000 population
equivalent discard

1 0.19 0

[10,000–40,000] 3 0.57 0
[40,000–100,000] 5 0.94 0
>100,000 population
equivalent discard

10 1.88 0

Boat anchoring
(number of boats
per summer per
100m2)

0 2.2 8

Industrial effluents
(distance in km)

COD < 100mg/l 5 (0.75) 0
COD= [100–1000mg/l] 10 (1.50) 0
COD > 1000mg/l 20 (3.00) 0

Aquaculture
(distance in km)

Small farms< 3977m2 0.5 0.16 0
Large farms > 3977m2 1 0.32 0
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Fig. 5. Examples of detailed maps classifying P. oceanica beds and dead matte depending on how they are influenced by (a) the 10 individual pressures (agriculture,
human-made coastline, coastal population, urbanization, fishing, coastal erosion, urban effluents, boat anchoring, industrial effluents and aquaculture) according to
their tipping point values and (b) the combination of the 10 pressures (raster mosaic equal to the weighted sum of the transformed values for all variables; weights
defined proportionally to the range of prediction for each partial plot). Tipping point values ranged between 0 and 2 for each variable; prediction ranged between
5.3% for fishing and 32.4% for human-made coastline, and weighted sums ranged between 0 and 1.38. Four equally spaced categories (very low, low, high and very
high) are used to help managers and stakeholders to make decisions according to the risk of tipping (risk of phase shift). The Gulf of Cannes is used as an example. All
the detailed maps are available: www.medtrix.fr (“IMPACT project”).
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managers could also take advantage of the individual pressure maps we
produced. For instance, they can be used to decide on which pressure
they should act on as a priority, and what pressure value (tipping point)
not to exceed. Some pressures are relatively easy to modulate (fishing,
anchoring, aquaculture or effluents to a lesser extent), while others are
quite unalterable (coastal population). For example, a recent coopera-
tion between science and management to regulate seine-haul fishing
has led to a reduction of between 43 and 90% in the frequency of new
scars occurring in seagrass beds (Orth et al., 2017b). Our study shows
that an anchoring pressure of> 2.2 small boats (< 15m in length) per
100m2 per summer needs to be reduced to avoid a drop-in seagrass bed
status. Recent works have highlighted the important but under-
estimated impact of anchoring on seagrass beds (Deter et al., 2017;
Unsworth et al., 2017), while preventive measures could be as simple as
mooring prohibition, mooring buoys or access to habitat maps for sai-
lors (Montefalcone et al., 2006; Okudan et al., 2011).

4.4. Biases and perspectives

When interpreting our results, it is important to consider the biases
inherent to the datasets, including the number of pressures and the
methods used to spatially model the pressures depending on the
bathymetry and the distance to the origin; these have already been
discussed by Holon et al. (2015a, 2015b). Note also, that our work
focuses on anthropogenic pressures from the driver-pressure-state-im-
pact-response framework (Digout and UNEP/GRID-Arendal, 2005) so to
make manager's decisions and actions easier, and has not taken into
consideration certain states (measurable changes in water quality such
as turbidity). However, these states directly act on and impact the

plants; their inclusion could be useful to complete our work in a more
mechanistic way (e.g. large-scale data concerning the prevalence of
pathogens, density of invasive species, rubbish density or chemical
contents). In addition, some dead mattes may have a natural (non-
human) origin (Boudouresque et al., 2009; Vacchi et al., 2014), but this
is assumed to be rare considering the very high stability of seagrass bed
limits where exerted anthropogenic pressures are weak (Holon et al.,
2015a, 2015b). Finally, quantitative values of tipping points may vary a
little according to the method used (Killick, 2016) and deserve to be
validated or even adjusted through another study. The literature con-
cerning the statistical analysis of tipping points is huge (Mantua, 2004;
Scheffer et al., 2009) and will certainly increase in the future as non-
linear effects are detected in real ecosystems (Andersen et al., 2009;
Gurbisz and Kemp, 2014; Connell et al., 2017; Hughes et al., 2017;
Lefcheck et al., 2017).

As a direct perspective, our model could be used to predict the
degradation status of P. oceanica along other coastlines. It could also be
applied to other habitats as soon as maps with information concerning
specific habitat status and pressure data become available. Seabeds
have not been mapped for numerous regions in the world, and many
coastlines lack data concerning multiple pressures (inventory, spatial
localization, distance of dilution). These regions could benefit if habitat
maps become more common. Moreover, our predictive model could
also be used to build scenarios depending on expected changes in
pressure data (e.g. increasing coastal population) or to predict (after a
refining step) the impact of a new infrastructure (e.g. harbour expan-
sion) within a bay. Similarly, even if our model already has a good
predictive capacity (71.3% of the variance explained), it could still
benefit from the inclusion of environmental variables. For example,

Fig. 6. Map classifying P. oceanica meadows and dead matte depending on how they are influenced by a combination of the 10 pressures (agriculture, human-made
coastline, coastal population, urbanization, fishing, coastal erosion, urban effluents, boat anchoring, industrial effluents and aquaculture) according to their tipping
point values (raster mosaic equal to the weighted sum of the transformed values for all variables; weights defined proportional to the range of prediction for each
partial plot). Administrative French departments are indicated in grey and main cities in black. All the detailed maps are available at www.medtrix.fr (“IMPACT”
project). Three zooms are presented (A, B and C).
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wind levels, freshwater effluents (river outputs and floods) or the sea
surface temperature could help to better predict seagrass bed loss and
differentiate natural and anthropogenic causes. For example, the model
could be combined with the IPCC (Intergovernmental Panel on Climate
Change, https://www.ipcc.ch/index.htm) climate change projections
and used to predict their impacts on P. oceanica meadows. Some of
these environmental variables are already impacting P. oceanica and
other seagrass species and are expected to increase in the future
(Boudouresque et al., 2009; Duarte, 2002; Jordà et al., 2012; Pergent
et al., 2014, 2015; Lefcheck et al., 2017; Orth et al., 2017a).

5. Conclusion

This study proposes a new approach to consider the role of human
pressures on the degradation status of coastal ecosystems. By using
maps of marine habitats and anthropogenic pressures our approach can
model and predict the relationships between human pressures and de-
gradation status. We selected our best model to build maps highlighting
priority areas for management. Using 50× 50m grid cells, our model
shows excellent performance to predict the degradation status of an
important marine ecosystem: P. oceanica meadows. Moreover, our
study provides useful tools for stakeholders and managers including
pressure tipping points and prioritization maps. These could be used to
facilitate decision making concerning impact assessment and actions
addressing specific threats and conservation. The method developed
here could be applied to other marine ecosystems.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biocon.2018.04.006.
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