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Although we are currently experiencing worldwide biodiversity loss, local

species richness does not always decline under anthropogenic pressure.

This conservation paradox may also apply in protected areas but has not

yet received conclusive evidence in marine ecosystems. Here, we survey

fish assemblages in six Mediterranean no-take reserves and their adjacent

fishing grounds using environmental DNA (eDNA) while controlling for

environmental conditions. We detect less fish species in marine reserves

than in nearby fished areas. The paradoxical gradient in species richness is

accompanied by a marked change in fish species composition under different

managements. This dissimilarity is mainly driven by species that are often

overlooked by classical visual surveys but detected with eDNA: crypto-

benthic, pelagic, and rare fishes. These results do not negate the importance

of reserves in protecting biodiversity but shed new light on how under-rep-

resented species groups can positively react to fishing pressure and how

conservation efforts can shape regional biodiversity patterns.

1. Introduction
Marine ecosystems and their resources are severely threatened by multiple press-

ures including climate change [1], over-exploitation [2], and habitat degradation

[3]. However, despite the prevailing trend of biodiversity loss at the global

scale [4,5], the number of species does not necessarily decline at the local scale

[6,7]. Long-term time series show that only 3% of coastal marine ecosystems

are experiencing a local decline in species richness while a positive trend was

reported in 16% of the studied cases [8]. This biodiversity conservation paradox,

i.e. species richness can increase under disturbance, can be explained by a balance

between extinction and colonization rates for a given location and a high species

turnover [7,9]. Such turnover can occur when endemic species are replaced by

exotic species [10] or by the range expansion of species from adjacent regions

under climate change [8]. Biodiversity can also increase in disturbed areas if the

removal of certain vulnerable species allows the establishment and coexistence

of more resistant species under the intermediate disturbance hypothesis [11].

This conservation paradox has received little attention in the spatial context

of protected areas. Protected areas are expanding worldwide following the

new commitment to protect at least 30% of the global ocean and land by 2030,

to achieve both biodiversity and climate goals [12–14]. Since some

© 2021 The Author(s) Published by the Royal Society. All rights reserved.
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conservation-dependent species can be rapidly extirpated by

human activities outside protected areas [15,16], we can

expect more species within protected areas than their non-pro-

tected counterparts. Yet, this assumption is supported by

scarce evidence [17,18], while other studies fail to show any

marked difference in species richness as a result of protection

[19–23] or even report higher local species richness in human-

modified natural habitats [24]. Here, we suggest that this lack

of consensus may come from incomplete species detection and

uncontrolled habitat or environmental covariates, at least in

coastal marine ecosystems.

Marine protected areas (MPAs), and in particular marine

reserves which are strictly no-take MPAs [25], offer a unique

opportunity to test this conservation paradox and some

underlying hypotheses. Marine reserves are widely recog-

nized as effective conservation tools supporting greater

density and biomass of exploited species within their bound-

aries than nearby fished areas [21,26–28]. Comparatively, the

extent to which marine reserves and nearby fished areas sup-

port different levels of species richness or different species

compositions remains unclear. On one side, large-bodied

and predator species are often overexploited by fisheries

and extirpated outside marine reserves increasing species

richness within reserves [15]. On the other side, marine

reserves can restore predator populations and thus strengthen

‘top-down’ trophic cascades thereby affecting biodiversity at

lower trophic levels [29]. Elucidating a potential marine con-

servation paradox would thus require the detection of a

broad range of fish species constituting assemblages from

large predators to small prey. Yet, many fish species are

missed by most capture- or visual-based surveys because

they are cryptobenthic, rare, or elusive [30–34]. Moreover,

mobile species may not be recorded as they only occur for

short amounts of time in a given location [30].

As an alternative, the environmental DNA (eDNA) meta-

barcoding approach overcomes some shortcomings of

classical surveys to characterize marine fish assemblages

[35,36] including small, cryptic, and elusive species [33,37].

eDNA is made of small fragments of intra- and extracellular

DNA generated by organisms in their proximate environ-

ment, and can be sampled to infer the presence of species,

monitor coastal ecosystems, and unveil ecological processes

[33,38–40]. Yet, the gaps in public genetic databases can

limit the breadth of species inventories based on eDNA meta-

barcoding [41]. In this study, we take advantage of eDNA

detectability potential, using a regionally augmented genetic

reference database, to uncover a previously hidden conserva-

tion paradox in coastal fish assemblages: marine reserves host

less species than nearby fished areas after controlling for

environmental conditions. We also show that changes in fish

species composition along a gradient of human impact are

mainly driven by species groups typically overlooked in most

MPA studies, namely cryptobenthic, pelagic, and rare fishes.

2. Results
A stratified sampling design was carried out to survey six

Mediterranean no-take reserves and their surrounding sites,

hereafter referred to as regions (see Methods, figure 1a; elec-

tronic supplementary material, table S1). Three sites were

considered for each of the six regions: one within the reserve

boundaries, one outside at 5 km from the reserve boundaries,

and one outside at 10 km, hereafter referred to as protection

levels (figure 1b). eDNA was filtered along 2 km transects

using a protocol optimized for monitoring coastal species

with four replicates per site. We assembled a new reference

genetic database (115 species sequenced to reach 75% cover-

age) for North-Western Mediterranean coastal fishes to

assign more eDNA sequences to known species using a

stringent bioinformatic pipeline.

(a) Metabarcoding and taxonomic assignment
The 72 eDNA samples (6 regions × 3 sites × 4 replicates per

site) yielded a total of 51 506 234 reads, with on average

715 364 reads per sample (±s.d. = 293 934). Assigning reads

to the reference database detected 122 unique fish taxa with

on average 35 taxa per sample (±10), among which 104

were identified at species level whereas 16 could only be

assigned to the genus level and two to the family level.

After removal of foreign species, uncertain assignments,

and freshwater fishes (electronic supplementary material,

Methods), 46 034 170 reads were assigned to a known

marine fish species. The mean number of reads per sample

dropped to 639 364 (±293 380), and read abundances were

transformed to presence/absence for all subsequent analyses.

A total of 97 fish species were identified across all samples

covering 74 genera and 43 families, with on average 30 fish

species (±9) per sample (figure 2). Almost half of the species

detected belong to four families, i.e. sparids (Sparidae, n = 16),

gobies (Gobiidae, n = 12), wrasses (Labridae, n = 7), and comb-

tooth blennies (Blenniidae, n = 7), whereas 30 families were

represented by only one species (electronic supplementary

material, figure S2). Detections included common Mediterra-

nean taxa such as the damselfish (Chromis chromis), the

salema porgy (Sarpa salpa), and the white seabream (Diplodus

sargus), as well as rare species like the grey triggerfish (Balistes

capriscus) and the blue shark (Prionace glauca).

(b) Species richness paradox
Overall, fish species richness seemingly increased outside the

reserve with, on average, 28 (±6) fish species within the

reserve, 30 (±10) species at 5 km outside, and 32 (±11) species

at 10 km outside, albeit no significant difference was detected

(Kruskal–Wallis χ
2 = 5.1, d.f. = 2, p = 0.078) (figure 2a).

To consider the confounding effects of environmental con-

ditions (habitat and climate) on the protection level effect, we

created 500 m buffer zones around each transect and extracted

the coverage of each substrate type (electronic supplementary

material, Methods), mean bottom depth, and the mean benthic

and surface chlorophyll a.We recorded the sea surface tempera-

ture (SST) during sampling and calculated themean distance of

each transect to the closest point on land. To avoid collinearity

between all these covariates, we performed a principal com-

ponent analysis (PCA). The first four orthogonal PCA axes

explained 74.2% of the total variance among sites and were

retained as explanatory variables in the next analyses to control

for environmental confounding factors (electronic supplemen-

tary material, figure S3).

We used generalized linear models (GLMs) to investigate

the effect of protection on species richness while accounting

for environmental differences represented by the PCA axes.

The influence of protection on fish richness was highly

significant (GLM, R2 = 0.40, p < 0.01; figure 2b; electronic

supplementary material, table S2). We detected no effect of
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the region on model residuals (Kruskal–Wallis χ
2 = 5.76,

d.f. = 5, p = 0.33). The model revealed a significant 45%

increase in overall species richness at 10 km outside the

reserve compared to inside ( p < 0.01; electronic supplementary

material, table S3).

(c) Species dissimilarity between assemblages
We estimated species dissimilarity or β-diversity between fish

assemblages using the Jaccard distance. Two independent

patterns may occur when measuring β-diversity: turnover

and nestedness [42,43]. Turnover occurs when species present

at one site are absent at another site but are replaced by other

species absent from the first. Nestedness occurs when species

present at one site are absent at another but are not replaced

by new species.

Species dissimilarity between protection levels was high

with an average β-diversity of 58.8% between the reserve

and 5 km outside (figure 2c), 57.6% between the reserve

and 10 km outside (figure 2d ), and 57.5% between 5 km

and 10 km outside (figure 2e). On average, 42.3% (±15.5%)

of fish species were replaced between sites under different

protection levels. This turnover represented 74% (±22.4%)

of the pairwise dissimilarities, whereas nestedness rep-

resented the remaining 26% (±22.4%). Eight species were

only recorded inside a reserve while 18 species were only

detected outside a reserve across the six regions (electronic

supplementary material, figure S4).

Distance-based redundancy analysis (dbRDA) on Jaccard

distances showed that both protection and environmental

variables significantly explained the dissimilarity in species

composition (F-test = 2.53, p < 0.001, R2 = 0.20). The turnover

component was also significantly explained by both the pro-

tection and the environment (F-test = 2.66, p < 0.001, R2 =

0.32). The nestedness, however, is not significantly explained

by any of the variables ( p > 0.05) (electronic supplementary

material, tables S4–S5).

Partial dbRDA revealed that the protection level, after

accounting for environmental conditions, significantly

explained 4.8% of fish assemblages (F-test = 1.80, p < 0.001,

R2 = 0.05) (figure 3a). Fish assemblages inside the reserves

were mostly characterized by pelagic fishes, whereas assem-

blages outside reserves were predominantly characterized by

cryptobenthic fish species as shown by the strongest contri-

bution of species scores on the partial dbRDA axis 1 (CAP1,

figure 3b; electronic supplementary material, figure S5).

(d) Unpacking the paradox by species traits
We then analysed all species scores along the first axis of the

partial dbRDA to determine which traits characterize the

species’ associations to the reserves or to the fished areas

(left versus right side on figure 3a). Species scores were sig-

nificantly correlated with their trophic level (Kendall

tau =−0.20, p < 0.01), common length (Kendall tau =−0.18,

p = 0.01), and vulnerability to fishing (Kendall tau =−0.21,

p < 0.01) (figure 4). We also found significant differences in

species scores according to their vertical position in the

water column (ANOVA F-value = 7.64, p < 0.001), with pela-

gic species significantly differing from cryptobenthic species
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Figure 1. Map of the three sampling sites within each of the six studied regions containing a no-take marine reserve (a), and zoom on the transects conducted in

each site near Carry-le-Rouet: inside the reserve, 5 km outside, and 10 km outside (b). The dashed line in (b) represents the boundary of the no-take reserve. (Online

version in colour.)
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(Tukey HSD =−0.12, p < 0.001) as well as, to a lesser extent,

benthic (Tukey HSD =−0.07, p = 0.01) and demersal species

(Tukey HSD =−0.08, p < 0.01) (figure 4d ).

Species richness of the different fish categories (crypto-

benthic, pelagic, and rare) were significantly explained by

protection and environment (GLM, R2 = 0.40, 0.48, and 0.45,

respectively, all p < 0.01) except for highly vulnerable fishes

( p = 0.09). Each model accounted for unmeasured variations

among regions with model residuals being not significant

(Kruskal–Wallis test = 9.37, 0.70, 7.54, and 0.55, respectively,

all p > 0.05). Cryptobenthic species richness increased by

66% ( p < 0.01) at 5 km outside compared to inside the

reserves and by 136% at 10 km outside (p < 0.001) (figure 5a).

Although pelagic species richness decreased with increasing

distance to the reserve, this was mainly driven by environ-

mental differences with no significant marginal effect of

protection ( p > 0.05, figure 5b). Rare fish species richness sig-

nificantly increased by 53% at 5 km outside ( p < 0.01) and

69% at 10 km outside the reserve ( p = 0.01) (figure 5c). Vul-

nerable fish species richness was homogeneous across

protection levels with, on average, one species per site

(figure 5d ).

3. Discussion

(a) Less but more vulnerable species in marine reserves
This study, showing less but different species inside reserves

compared to fishing grounds nearby, does not negate the

key role of reserves in protecting biodiversity but sheds

new light on how under-represented species in classical

visual surveys—cryptobenthic, pelagic, and rare—can react

counterintuitively to fishing pressure. We reveal, through

the sampling of six no-take reserves using a standardized

eDNA protocol while accounting for environmental differ-

ences, that fish species richness decreases with protection.

This paradox could only emerge with a reliable eDNA meta-

barcoding approach and an extensive genetic reference

database. Besides, we highlight a marked species turnover

along the protection gradient, indicating a strong difference
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of fish assemblageswithin and outside reserves. Reserves offer

protection to fishes that are characterized by a high trophic

level and large body size, so vulnerable to fishing, as pre-

viously shown [44,45]. By contrast, fished areas host less

vulnerable species with a lower trophic level and smaller

body size (figure 4).

The disparity in trophic level could explain the paradoxical

changes in species richness, as fishing pressure and protection

can change trophic interactions. Predation is one of the key pro-

cesses influencing the richness and composition of ecological

assemblages [46–48]. Since fishing pressure often targets large

predatory fishes [15,49], their removal in fished areas can

induce a decrease of top-down control on prey species

increasing their richness. Conversely, marine reserves

increase predator populations and thus can restore trophic

cascades within their boundaries [29], thereby affecting bio-

diversity at lower trophic levels and potentially causing the

local extinction of prey species inside MPAs [50].

This hypothesis is supported by the increasing diversity of

cryptobenthic fishes with increasing distance from the reserve

(figure 5a). Cryptobenthic fishes represent a large but over-

looked dimension of fish biomass and diversity on reef

ecosystems [31]. Combined with their rapid growth, high pro-

ductivity, and high mortality due to predation [51,52],

cryptobenthic fishes represent almost 60% of consumed reef

fish biomass [53]. As they are not targeted by fisheries but pre-

dated by almost every other fish, cryptobenthic fishes could

find refuge from predators outside marine reserves and form

highly diverse assemblages coexisting in human-dominated

areas. However, because of their small body size and cryptic

lifestyle, they are easily overlooked by conventional survey

methods that do not target them specifically [54].

Our results also show more occurrences of rare species

outside the reserves. This pattern can be explained by the

‘oddity effect’ where predators focus on conspicuous prey, in

this case rare species, to optimize foraging success [48]. This

strategy is especially beneficial when prey tend to form aggre-

gations making it harder for predators to single out

individual prey, called the ‘confusion effect’ [48]. So, predators

could preferentially target low-abundance prey species inside

reserves and remove them. Similar disproportionate effects of

predation have previously been demonstrated in field and lab-

oratory experiments. Stier et al. [55] found that predation by the

peacock grouper Cephalopholis argus removed 64% of rare

species from experimental reef patches but only 36% of

common species. In the same vein, Almany et al. [48] observed

that the brown dottyback Pseudochromis fuscus, a small general-

ist predator, targets rare prey inmixed assemblages irrespective

of colouration or visual marks. They hypothesize that the odd

behaviour of rare species compared to the common ones sets

them apart and makes them an easier target for predators.

The strong turnover in fish assemblages under different

protection levels suggests that different ecological processes

and ecosystem services operate within and outside reserves

[7]. Although less diverse, assemblages within reserves are

characterized by larger and higher trophic-level species

which typically have higher commercial and touristic values.

Fish assemblages inside reserves are characterized by pelagic

species, especially Sarda sarda, Engraulis encrasicolus, Chelon

auratus, Xiphias gladius, and Trachurus mediterraneus. These

species have a commercial interest but also contribute to reef

productivity through water nutrient enrichment and could

play important trophic roles inside reserves [56]. Outside

reserves, we find higher biodiversity and assemblages domi-

nated by smaller, (crypto)benthic and demersal species. The

increased diversity of cryptobenthic species in impacted

areas is hopeful for conservation as well. Cryptobenthic

fishes fuel reef trophodynamics and provide crucial food

resources for carnivorous fishes [53]. In doing so, they contrib-

ute to sustain fish populations in exploited areas. They also

provide a reservoir of available biomass for exploited predator

populations to recover if fishing pressure is alleviated or

suspended in currently fished areas.

(b) Potential and limitations of eDNA metabarcoding
The development of eDNA as a reliable method to monitor

biodiversity and evaluate anthropogenic impacts is crucial
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(b) pelagic, (c) rare, and (d ) vulnerable. Asterisks indicate significant changes in species richness at 5 km or 10 km outside in reference to the reserve (marginal

effects test, p < 0.05 *, less than 0.01 **). (Online version in colour.)
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because important changes in biodiversity might currently

occur under our radar [39,57]. Depending on the organisms

of interest, eDNA can be used to sample whole eukaryote

assemblages [58] or more specific taxonomic groups ranging

from sponges and corals [59] to larger taxa such as sharks

[30]. In our case, we potentially missed some native and

common species in the Mediterranean Sea since the teleo

marker cannot distinguish the wrasses Symphodus rostratus,

S. cinnereus, S. mediterraneus, and S. roissali from each other,

or Labrus merula from L. viridis, as well as the rarer pipefishes

Syngnathus abaster and S. sp cfr taenionotus. Most regional and

global reference databases for the teleo metabarcode also still

need to be completed to avoid limited species assignments

[41]. In our case, we enriched the online genetic database

(European Nucleotide Archive) which covered only 31% of

all Mediterranean fish species by sampling and sequencing

additional 115 species to reach 75% coverage of the regional

species pool (see Methods). This unprecedented effort allowed

the detection of 97 species ranging from the very small Liech-

tenstein’s goby Corcyrogobius liechtensteini (2.7 cm) to the large

blue shark Prionace glauca (250 cm). Cryptobenthic, pelagic,

and elusive species are often ignored in MPA assessments.

Without their detection, we would not be able to uncover

the hidden biodiversity patterns between marine reserves

and their proximate outsides. We also show that our genetic

reference database was not biased towards some species

groups (electronic supplementary material, figure S6), so we

are confident that a more exhaustive database would provide

the same patterns.

Thedetectionof eDNAin seawater is partlydue to its persist-

ence in the environment, which depends on biotic and abiotic

factors driving eDNA production, degradation, and transport

[60–62]. Much is still unknown about the spatial and temporal

resolution of eDNA in the marine coastal environment. Meso-

cosm experiments report variable decay rates of eDNA in

seawater, with half-lives ranging from 1 up to 71 h [60,63]. How-

ever, decay and dilution happen faster in natural environments.

A field experiment in coastal seawater finds that eDNAbecomes

undetectable only 1 h after introduction [64]. Coupling decay

rates to dispersal distances, estimated by particle tracking

models, suggests that suspended eDNAcanonaverage be trans-

ported for only 1 kmbefore 50%has decayed [36]. In our system,

the average current velocity during sampling was 0.04 m s−1 or

approximately 140 m h−1. Combined with relatively short half-

lives, it is unlikely that sufficient detectable eDNA could be

transported between our sites 5 km and 10 km apart confirming

the independence of our sites and the local origin of our signal.

These estimates are corroborated by the growingbodyof empiri-

cal studies finding strong spatial fidelity of eDNA signals,

differentiating sites only hundreds of metres apart despite tidal

and oceanic movements [65–68]. Together, these results demon-

strate theapplicabilityof eDNAfor localmonitoring studies [69].

Yet, accurate particle transport models which directly take into

account eDNAconcentration, advection,dilution, coastlinemor-

phology, and ground-truthed decay rates would allow a better

understanding of eDNA transport and detectability patterns

across the seascape.

(c) Diversifying managements for diversifying regional

fish assemblages
The higher species richness found outside reserves does not

imply that marine reserves fail to protect biodiversity. It

rather tells us that species richness and site-level diversity

metrics cannot be considered as reliable indicators of human

pressure since they miss important species compositional

changes and traits [6,58]. Our results shed light on how conser-

vation, like fisheries management [70], can shape biodiversity

patterns at a regional scale. Marine reserves do not necessarily

increase species diversity. Rather, a mosaic of protection levels,

that creates heterogeneous fishing pressures, can promote het-

erogeneous ecological processes at various intensities, thus

increasing biotic dissimilarity between adjacent areas and the

overall level of regional diversity (or γ-diversity). Since the sus-

tainability of ecosystem functioning and the continuous

delivery of ecosystem services at the regional scale is positively

related to the number of species comprising the regional pool

(γ-diversity) [71,72], which depends on both local or α-diver-

sity and the dissimilarity in species composition between

sites (β-diversity) [73], our study suggests that diversifying

managementoptionscouldbetter sustainecosystemfunctioning

and limit the ongoing biotic homogenization [74].

4. Methods

(a) Study area and eDNA sampling
Six Mediterranean marine reserves with strict no-take policy and

established at least six years prior to sampling were selected for

our study (figure 1). The Mediterranean Sea is a hotspot of

marine biodiversity [75] but all its ecoregions and territorial

waters are under high human pressure [76], except for the very

few fully protected marine reserves [77]. Four replicates of 30 l

of seawater were collected along a 2 km transect inside each

site within each reserve, 5 km, and 10 km outside, i.e. in

impacted areas, and filtered using a 0.20-µM filtration capsule

(electronic supplementary material, Methods).

(b) eDNA extraction and sequencing
eDNAwas extracted and amplified by PCR with the fish-specific

primer pair teleo targeting a 70 bp fragment at the end of the

mitochondrial DNA 12S rRNA gene [78,79] (electronic sup-

plementary material, Methods). PCR reactions were carried out

in 12 replicates per sample and unique tags were given to each

sample. Libraries were prepared using the MetaFast protocol.

A paired-end sequencing (2 × 125 bp) was carried out on a

MiSeq (Illumina, San Diego, CA, USA) using the MiSeq Flow

Cell Kit Version3 (Illumina, San Diego, CA, USA) following the

manufacturer’s instructions. Library preparation and sequencing

were performed at Fasteris (Geneva, Switzerland).

(c) Reference database
At the onset of our study only 31% of all Mediterranean fish

species [80] were referenced in the European Nucleotide Archive

(ENA) [81] (release 138) for the 12S rRNA fragment targeted by

the teleo primers. To supplement this reference database, fin clips

of 115 fish species from the North-Western Mediterranean were

collected from fisheries landings and added to the database.

DNA was extracted from tissue samples and a 12S rRNA gene

fragment of ca 675 bp encompassing the teleo metabarcoding

fragment was targeted using the forward primer V05F_898 and

the reverse teleo primer [82]. A 340 bp fragment was additio-

nally targeted for 16 species using the newly designed forward

primer MF12S_F (50-CTAGAGGAGCCTGTYVT) and the reverse

primer MF12S_R (50-GRHAAGTCGTAACATGGTA) (electronic

supplementary material, Methods).

The final reference database used in this study contained

sequences of 320 species corresponding to 41% of all
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Mediterranean fish species but 75% of the regional North-Wes-

tern species pool. The remaining gap did not bias the

biodiversity assessment made in this study (electronic sup-

plementary material, Methods, table S6, figure S6).

(d) Taxonomic assignment of reads
The sequence reads were analysed using the OBITools package

[78,83]. Taxonomic assignment of reads was performed using

the program ECOTAG, with both the new regional fish reference

database and the public reference database of sequences

extracted from ENA (release 140) using the ECOPCR program

[84,85]. Reads showing less than 98% similarity were removed.

Taxa were preferentially assigned based on the local reference

database, except if the similarity was higher for the public refer-

ence database. The resulting dataset was manually checked to

correct erroneous identifications and remove foreign species

(electronic supplementary material, Methods).

(e) Diversity indices
We compared total fish species richness among protection levels

as well as the richness of the cryptobenthic, pelagic, rare, and

vulnerable species. Cryptobenthic species were selected based

on their families [31]. Pelagic species were those defined by the

‘Vertical Distribution’ parameter in the FishMed database [86].

Rare species were those detected in two samples or less within

each region. The vulnerability of species to fishing was obtained

from FishBase [87]. The vulnerable species are those with a vul-

nerability higher than 70, which corresponds to ‘high’ or ‘very

high’ vulnerability to fishing on a scale from 1 to 100 [87].

We estimated species dissimilarity or β-diversity between

assemblages using the Jaccard distance. To determine the relative

contribution of species turnover and nestedness to total β-diversity,

we used the additive partitioning of the pairwise Jaccard dissimi-

larity [42]. This framework teases apart the variation in species

composition from species turnover only, which is independent of

richness, and from nested patterns [43]. We calculated the total dis-

similarity, turnover, and nestedness between all samples using the

R packages vegan and betapart [88,89].

( f ) Modelling reserve effect
We used GLMs to investigate the effect of protection on species

richness while accounting for environmental differences rep-

resented by the PCA axes. After checking for their distribution,

total, cryptobenthic, pelagic, and rare species richness were mod-

elled using a Gaussian distribution, whereas vulnerable species

richness was modelled using a Poisson distribution.

We determined model fit by calculating the R2 for each

model, and tested the conditional effect of coefficients by

calculating the marginal effects with the R package margins

[90]. We tested the effects of potentially missed important factors

by comparing residuals of our models between regions using a

Kruskal–Wallis test.

We used a dbRDA (function capscale, package vegan) to analyse

changes in assemblage composition measured by Jaccard distance

between samples in relation to the protection level and the four

environmental PCA axes. We computed additional dbRDA on

the species turnover and nestedness with each time the protection

category and four environmental PCs as explanatory variables. Sig-

nificance of themodels aswell as the significance of each axis and of

the marginal effect of each variable were tested using ANOVA-like

permutation tests with 9999 permutations as implemented in the

vegan’s anova.cca function [89,91].

Next, we computed a partial dbRDA using the Jaccard dis-

tance to isolate the effect of protection after accounting for

environment [92]. From this partial dbRDA, we extracted the

species scores along the axis that explains most of the variance

to infer which species contribute most to the differences in

assemblage composition between protection levels. We focused

on species whose projected length on the first axis (CAP1)

belongs to the top 25% of absolute species scores. We then

used the Kendall rank correlation coefficient to test the corre-

lation between the species scores and the species’ trophic level,

common length, and vulnerability to fishing. We used ANOVA

and Tukey post hoc to test for the differences in species scores

according to their vertical position (cryptobenthic, benthic,

demersal, and pelagic). All analyses were carried out in

R v. 3.6.1 [93].

Data accessibility. The data and R codes to replicate analyses and figures
are available at https://github.com/eboulanger/MEDeDNA–

reserves. The new teleo reference sequences and Illumnia raw
sequences are available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.18931zcx1 [94] and https://doi.
org/10.5061/dryad.j9kd51cbr [95].
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